TiberCAD: a tool for multiscale simulation of nanostructured devices

Fabio Sacconi

Matthias Auf der Maur, Giuseppe Romano, Gabriele Penazzi, Alessandro Pecchia, Aldo Di Carlo

Tiberlab Srl <u>www.tiberlab.com</u>

tiberlab

Origin: Spin-off of University of Rome Tor Vergata

Mission: To develop up-to-date innovative software solutions to design and to simulate advanced electronic and optoelectronic devices, based on a *multiscale* approach.

Applications:

- Nanostructured devices and nanoelectronics: nanowire FETs, HEMT, sensors
- Solid State lighting: Qdot and Qwell-based LEDs
- Photovoltaic cells
 - Organic/hybrid PV technologies
 - Dye-sensitized solar cells (DSC) / Perowskite Solid state DSC

www.tiberlab.com

Miniaturization Trend

tC

Motivation: Multiscale/Multiphysics modeling

4

Different physical models on different scales are needed to describe nanostructured devices

www.tiberlab.com

- Drift-diffusion for transport
- Elasticity for heterostructure strain and polarizations
- EFA k-p for quantum properties

Models: PDE solved on FEM grid

www.tiberlab.com

Nanoinnovation, Rome 20-23 September 2016

The multiscale approach

Models: Atomistic solvers

www.tiberlab.com

Physical models overview

Physical models even from different scale can be **linked or self-consistently coupled** for a correct description of nanostructured electronic devices

www.tiberlab.com

Graphical User Interface

www.tiberlab.com

Applications

tiberlab 11

www.tiberlab.com

InAs Qdots LEDs

www.tiberlab.com

InGaAs Quantum wire

www.tiberlab.com

Rome 20-23 September 2016

From exp. to simulation model: InP surface Qdots

k*p Av

1.7

281.703

Strain field maps

0,078

0.06 0,04

0,02

1.8

Realistic dot

1.5

E (eV)

1.6

D. Barettin et al. J. Appl Phys. 117, 094306, (2015)

www.tiberlab.com

Nanoinnovation, Rome 20-23 September 2016

0,069 0,06 0,04

0,02

0,0007

InP surface Qdots: Electronic properties

www.tiberlab.com

idealized (LQD) Qdots

www.tiberlab.com

Shape and alloy effects in Qdot system: Current densities

Increasing electron current density with electron-rich layer

www.tiberlab.com

Modelling nanopillars InGaN/GaN LEDs

www.tiberlab.com

InGaN/GaN QW LED Simulation: 1D + atomistic

Model system: 3 nm single quantum well, 15/20/25/30/35% In, p-i-n structure:

Continuous models are solved in 1D

 \Rightarrow No in-plane potential fluctuations

el-hl overlap is reduced due to QCSE

M. Auf der Maur et al. PRL 116, 027401 (2016)

www.tiberlab.com

InGaN/GaN QW LED: Localization behavior

Correlation of local In concentration with wave function localization

InGaN/GaN QW LED: Simulation vs. experiment

Assume optimistic case: constant A and C (measured values) \Rightarrow how does the peak IQE vary with wavelength?

⇒ Random alloy fluctuations explain the missing contribution to the green gap

M. Auf der Maur et al. PRL 116, 027401 (2016)

GPU/CUDA developments

1,000,000 atoms on a WS!

Speed (Mxv/sec)

Fig 3:State 1 confined inside the Dot

W. Rodrigues, A. Pecchia, A Di Carlo, Comp. Phys. Comm. (2014)

www.tiberlab.com

Fig 4:State 3 confined inside the Dot

Fig 5:State 8 confined inside the Ring

Selected publications

- <u>Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations</u> Matthias Auf der Maur, Alessandro Pecchia, Gabriele Penazzi, Walter Rodrigues, and Aldo Di Carlo Phys. Rev. Lett. 116, 027401 (2016)
- Broadband light sources based on InAs/InGaAs metamorphic quantum dots L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri Journal of Applied Physics 119, 143102 (2016)
- Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules Daniele Barettin, Matthias Auf der Maur, Roberta De Angelis, Paolo Prosposito, Mauro Casalboni, and Alessandro Pecchia Journal of Applied Physics 117, 094306 (2015)
- <u>Multiscale approaches for the simulation of InGaN/GaN LEDs</u> Matthias Auf der Maur Journal of Computational Electronics, Volume 14, Issue 2, pp 398-408 (June 2015)
- <u>Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results</u> Daniele Barettin, Roberta De Angelis, Paolo Prosposito, Matthias Auf der Maur, Mauro Casalboni and Alessandro Pecchia Nanotechnology 25 (2014) 195201 (9pp)
- <u>AlGaN/GaN HEMT degradation: An Electro-Thermo-Mechanical Simulation</u> *M. Auf der Maur, A. Di Carlo* IEEE Transactions on Electron Devices, Vol. 60, Issue 10 (2013), pages 3142-3148
- Optoelectronic Properties of Nanocolumn InGaN/GaN LEDs
 Fabio Sacconi, Matthias Auf der Maur, Aldo Di Carlo
 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 11, NOVEMBER 2012
- <u>The Multiscale Paradigm in Electronic Device Simulation</u> Matthias Auf der Maur, Gabriele Penazzi, Giuseppe Romano, Fabio Sacconi, Alessandro Pecchia, and Aldo Di Carlo IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 5, MAY 2011

www.tiberlab.com

Poster session n. 44

TiberCAD: a tool for multiscale simulation of nanostructured devices

*F. Sacconi, M. Auf der Maur, G. Romano, G. Penazzi, A.Pecchia, S. Bellocchio, A. Di Carlo Tiberteb Srl, Via del Politecnico, 1, Rome, Italy

Nano Conference & Exhibition

tiberCAD is a multiscale software tool for CAD/CAE applications in the field of electronic and optoelectronic nanostructured devices. It allows to model and design innovative devices based on new materials, such as nitrides guantum well-based LEDs, nanowire FETs, organic and hybrid solar cells, for applications in lighting, sensors, energy harvesting. tiberCAD provides atomistic (DFT, ETB, NEGF) and FEM-based tools (EFA guantum, elasticity, thermal, particle transport) to accomplish the critical requirements imposed by the recent developments in Key Enabling Technologies such as micro-nanoelectronics, nanotechnology, photonics and advanced materials, considered central for innovation and market growth.

Table second (Derist) com

Sensors and Energy harvesting modules

Photo-Piezo-Termo-Electric energy

quantities (VEE strain quantum charge) onto FEM orid for multicoale modeling

Organic Photovoltaics (OPV); Dye-sensitized solar cells (DSC); perovskite-based Solid State DSC

www.tiberlab.com

Thank you

Additional info about **TiberCAD**: http://www.tiberlab.com

Download free trial version:

www.tiberlab.com info@tiberlab.com

www.tiberlab.com

